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In this article we shall present a unified and axiomatized view of several the-
ories and algorithms of image multiscale analysis (and low level vision) which
have been developed in the past twenty years. We shall show that under
reasonable invariance and assumptions, all image (and shape) analyses can
be reduced to a single partial differential equation. In the same way, movie
analysis leads to a single parabolic differential equation. We discuss some
applications to image segmentation and movie restoration. The experiments
show how accurate and invariant the numerical schemes must be and we com-
pare several (old and new) algorithms by discussing how well they match the
axiomatic invariance requirements.

CONTENTS
1 Introduction 2
2 Image multiscale analysis 6
3 Axiomatization of image multiscale analyses and
classification of the main models 12
4 Shape multiscale analyses 16
5 Relation between image and shape multiscale
analyses 20
6 Multiscale segmentation 22
7 An example: texture discrimination 26

8 Movies multiscale analysis 30



2 L. ALVAREZ AND J. M. MOREL

9 Invariance and stability requirements for numeri-

cal schemes of the fundamental equation. 32
10 Finite difference schemes for the AMSS model 36
11 Morphological (set evolution) schemes 42
12 Conclusions 50
Appendix A. The ‘fundamental theorem’ of image
analysis 50
Appendix B. Proof of the scale normalization
lemma 51
Appendix C. Classification of shape multiscale
analyses 53
References 55

1. Introduction
1.1. What will be done, what not, and why?

Before starting with what will be the main object of this survey — image
multiscale analysis — we intend to give a very brief account of what image
processing is and the choices we have made about what should be devel-
oped here and what should be omitted. Image processing may be viewed
as a long list of techniques for capturing, transmitting, and extracting in-
formation from digital images, in close relation with what is assumed to
be relevant to human perception. Here is, accordingly, the list of subjects
treated in a classical manual of image processing: Visual perception, Digiti-
zation, Compression, Enhancement, Restoration, Reconstruction, Matching,
Segmentation, (Semantic) Representation (Rosenfeld and Kak, 1982). This
defines image processing as a somewhat abstract theory. Other manuals
focus on practical applications to perception-based control of robots (Horn,
1986) vision theory (Marr, 1982), while many other monographs treat a
single technological application: radar vision, microscopy, satellite imaging,
compression standards, character recognition, etc. These involve specific
mathematical techniques which will not be presented here. Indeed, when-
ever some a priort (statistical, structural) knowledge about the processed
image is at hand, the process must be adapted accordingly and (for instance)
the use of stochastic filtering techniques, is justified, but specific.

The IEEE monographs and proceedings give a good account of what is
being done in image processing and one can get a rather complete view
of the image analysis subject by reading the proceedings of the biannual
ICCV (International Conference on Computer Vision). Now, whatever the
envisaged applications are, the nine items from Kak and Rosenfeld are a re-
liable common denominator. They represent what everybody should know
before starting any application dealing with images or a formalized theory
of vision. From the nine terms quoted above, only the second (digitization)
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and the last (semantic representation) fall outside our field because the first
relates to the engineering of captors and the last to artificial intelligence and
structured programming. Starting with the mathematical classification of
the subjects, let us say that compression and reconstruction rely on sharp
mathematical techniques related to harmonic analysis. Indeed, the main
step of compression-reconstruction devices is a decomposition of the im-
age on a well chosen functional orthonormal basis which can be classical
(Fourier, Haar, Hadamard) or new: Wavelets (Meyer, Mallat, Daubechies,
etc.), Wavelet packages, etc. All these theories, from the mathematical as
well as from the numerical viewpoint, are well explained in several recent
books (see e.g. Meyer (1992)), accessible to both mathematicians and engi-
neers, and we simply choose not to present them here. However, there is an-
other reason for this: we must distinguish between techniques for analysing
images (which therefore strongly rely on the geometry of images) and tech-
niques for storing them, where there is no need for geometrical invariance in
the numerical representation. When one wants to compress, ‘tous les coups
sont permis’. In addition to this intuitive difference there is a correspond-
ing strong difference in mathematical techniques. As we shall see, image-
analysis geometry-preserving techniques must be fully nonlinear (probably
one of the first to understand this and draw the mathematical consequences
was Matheron (1975)). Therefore, from the initial nine subjects from the
Kak-Rosenfeld classification we shall keep only four: wvisual perception, en-
hancement, restoration and segmentation. (We have also omitted matching
because this is a secondary task, only effectuated after some of the four
preceding processes have been applied.) Because the four mentioned sub-
jects obey the same geometric requirements, we shall see that they can be
treated by a common theory which we shall call multiscale analysis. We shall
therefore not treat them as primary subjects and they will simply appear as
natural consequences or applications of the theory of geometric multiscale
analysis.

1.2. Geometric multiscale analysis

This section is devoted to a short overview of what will be covered.

A numerical image can be modelled as a real function ug(x) defined in
RY (in practice, N = 2 or 3). The main concept of vision theory and
image analysis is multiscale analysis (or ‘scale space’). Multiscale analysis
associates with u(0) = up a sequence of simplified (smoothed) images u(t, z)
which depend upon an abstract parameter ¢ > 0, the scale. The image
u(t,x) is called analysis of the image ug at scale t. The formalization of
scale space has received much attention in the past ten years; more than
a dozen of theories for image, shape or ‘texture’ multiscale analysis have
been proposed and recent mathematical work has permitted a formalization
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of the whole field. We shall see that several formal principles (or axioms)
are sufficient to characterize and unify these theories and algorithms and
to show that some of them simply are equivalent. These principles are
causality (a concept in vision theory which can be led back to a maximum
principle), Euclidean (and/or affine) invariance, which means that image
analysis does not depend upon the distance and orientation in space of
the analysed image, and morphological invariance which means that image
analysis does not depend upon a contrast change.

The characterization and classification of the numerous theories of image
and shape analysis will be obtained by identifying the underlying partial
differential equations (which have been more or less implicit in many theo-
ries!). The axiomatic characterization leads, as we shall see, to a significant
improvement in most proposed algorithms as well as to new ones with more
invariance properties. Among the theories which will be axiomatically or
numerically tested here, we shall mention

the Raw Primal Sketch by Hildreth and Marr,
the Scale Space by Witkin, Koenderink, etc.,
the Intrinsic Heat Equation by Gage, Hamilton, Grayson, Angenent,
etc.,
e  the Motion by Mean Curvature (Osher, Sethian, Evans, Spruck, Giga,
Goto, Barles, Souganidis, etc.),
the Entropy Scale Space by Kimia, Tannenbaum and Zucker,
the Tezton theory by Julesz,
the Dynamic Shape by Koenderink and Van Doorn,
the Curvature Primal Sketch by Mackworth and Mocktarian, Asada
and Brady, etc.,
° the Morphologie Mathématique by Matheron, Serra and the ‘Fontaine-
bleau school’,
the Anisotropic Diffusion by Perona and Malik,
the Affine Scale Space of Curves by Sapiro and Tannenbaum,
the Affine Morphological Scale Space of images by Alvarez, Guichard,
Lions and Morel,
e the Affine Morphological Galilean Scale Space of movies by the same
authors.

The classification of these multiscale theories will lead us to focus on the
only one of them which simultaneously matches all invariance and stability
requirements partially satisfied by the others: the Affine Morphological Scale
Space (AMSS). This multiscale analysis can be defined by a simple Partial
Differential Equation (PDE),

ou

= = |Du|(t - div(Du/|Du|)Y?,  w(0,z) = uo(z), (1.1)
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Fig. 1. Three different representation of a 200 x 300 pixels binary image (from left to
right): (a) the classical discrete representation, (b) the level curve representation,
(c) the distance function to the level curve. See Section 9 for more details.

where u(t,z) denotes the image analysed at scale ¢ and point z. (This
parabolic equation admits a unique ‘viscosity solution’ in the Crandall-Ishii-
Lions (1991) sense.) As we shall see, the equation of the AMSS handles
independently all level sets of the analysed image and is therefore compatible
with the Morphologie Mathématique (which asks for contrast invariance).
In addition, contrast invariance means that the boundary of every level set
of the image is analysed as a shape and we get a common multiscale analysis
for shapes and images.

A multiscale formalization of image segmentation can be developed with
analogous principles and leads to multiscale segmentation algorithms. Multi-
scale segmentation associates an initial image up with a sequence u(t,z),
K(t,z), where u(t,z) is the image simplified at scale ¢t and K (¢, z) the set
of boundaries of the homogeneous regions of ug at scale t. Thanks to the
formalization, many segmentation algorithms can be reduced to one.

As a first application of the axiomatic method, we shall show how both
scale space and image segmentation theories lead to texture segmentation
algorithms as well as to a rigorous discussion of Julesz’ axiomatic theory of
texture discrimination. The experimental result of this discussion is unex-
pected.

We finally devote some pages to the above mentioned Affine Morphological
Galilean analysis of movies, with Guichard’s (1993) remarkable experimental
results in movie denoising. The underlying equation,

ou

i (IVu| curv'/3(w))177 ((|Vu|sgn(curv(v)) accel(w))*)?,  (1.2)
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is also a parabolic equation, where curv denotes the nonlinear differential
operator computing the curvature of the level lines, and accel represents the
‘apparent acceleration’ observed at a given space~time point of the movie.

Roughly speaking, this survey has two parts: in the first, (Sections 1 to
8) we develop the above mentioned theories and give comparative numerical
results on test images. The second is devoted to a long discussion of old and
new algorithms for Mean Curvature Motion (applied to images or shapes)
and the AMSS model (equation (1.1)).

2. Image multiscale analysis
2.1. A short story of the subject

Computer vision deals with a philosophical, psychological, physiological and
technical question which can be stated in a few words: how can the local
brightness information arriving at the retina of some individual (or any op-
tical sensor) be transformed into a global percept of the objects surrounding
him, including their distance, colour and shape? In the 1960s, this questior
was translated into a very practical framework with the new possibilities for
experimentation offered by digital pictures with computers. The new tech-
nology has enabled accurate measurements of human visual performance or
digital pictures and the first experiments in ‘computer vision’. The joint de
velopments in pschophysics and computer vision have led to a new doctrine
the existence of low level vision. The story of the doctrine is well explainec
in David Marr’s book Vision and we shall just give a few hints of how thi:
doctrine developed.

On the other hand, several psychophysical experiments due to Bela Jules:
and his school proved that the reconstruction of the spatial environment fron
binocular information was an automated, reflex process, independent of an;
learning. Julesz also studied the ‘preattentive’ perception of textures anc
proved the existence of a process for discriminating textures independentl:
of any a priori knowledge. The discrimination process is fast, parallel anc
Julesz and his school discussed it in mathematical terms from statistics anc
geometry. These experiments, as well as the neurobiological experiments o
Hubel and Wiesel, gave proof of the existence, in the first milliseconds o
the perception process, of a series of parallel, fast and irreversible operation
applied to the retina information and already yielding very rich and usefu
information to further understanding of the ‘image’.

2.2. The visual pyramid as an algorithm

We shall call this series of operations the ‘visual pyramid’. In mathematice
terms, it may be thought of as an algorithm but not in the Turing sense; i
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the more general sense where we define an algorithm as a black box trans-
forming its input into an output in a deterministic way by a physical process:
in any case, this machine is assumed to be physically implemented in the
brain. We must distinguish the problem of how this machine works in the
case of the brain and what it really does as an information processor (what
Chomsky called performance versus competence). Indeed, the second ques-
tion is simply a mathematical question, while the first one is very relevant
in neurobiology. We shall now focus on the mathematical question and treat
it in a rather rough way by answering the three questions:

(a) What is the input of the visual pyramid?

(b) What is its output?

(¢) What basic principles must obey the visual pyramid if it is considered
to be a physical system?

2.3. What is the input of the visual pyramid?

A simple model to discuss image processing is to define an ‘image’ as a
‘brightness’ function ug(x) at each point x of a domain of the plane. This
domain, which may be the plane itself, is a model of the retina or any
other photosensitive surface. In what follows, we shall take the plane for
simplicity. For commodity, in the discussion, we shall always assume that
uo(z) is in the space F of all continuous real functions u(z) on RY such that
I(1 + |z|)~Nu(z)|| < C for some N and C. Of course, the datum of ug(z) is
not absolute in perception theory, but can be considered as the element of an
equivalence class. If y is a vector of the plane, the shifted datum ug(x — y),
which is the image shifted by y, is an equivalent datum. In the same way,
the change of up(x) into ug(Rz) where R is an isometry of the plane should
not change the visual analysis. Finally, we can think of u¢ as belonging to
a projective class, that is, as a representative of the class ug(Az) where A
is any projective map of the plane. Indeed, a plane image can be viewed by
an observer from any distance and orientation in space (think of a painting
in a gallery). Therefore, the input ug(x) is assumed to be equivalent to
any of its anamorphoses ug(Az). We shall assume, in the following, A to
be only any affine map, which makes sense when the ratio between the
size of the observed objects and the distance to the sensor is small. Last
but not least, the observation of uy(z) does not generally give any reliable
information on the number of photons sent by any visible place to the optical
sensor. Therefore, the equivalence class in consideration will be g{ug(z)),
where g stands for any (unknown) contrast function depending on the sensor.
This last assumption, that only isophotes matter, is associated with the
‘mathematical morphology’ school. So we shall call it the ‘morphological’
assumption.

To summarize, an image is an equivalence class of functions ug(Az) where
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A is a translation or an isometry in most classical geometrical models, A is
any affine map in the simplified projective model and it is a class of functions
g(ug(z)) where g is any continuous nondecreasing function in the morpho-
logical model. We can combine these models and consider a morphological
projective model, that is, an equivalence class under the action of all gs and
As: g(uo(Ax)).

2.4. What is the output of the visual pyramid?

Starting from the local brightness information, each layer of the visual pyra-
mid is assumed to yield more and more global ‘low level’ information about
the image. This information is assumed to be usable for the geometric
reconstruction (stereovision) as well as for ‘high level vision’, that is, the
interpretation of the scene. Whatever its use might be, most models define
the basic output as either

e  asmoothed image (from which reliable ‘features’ can be extracted by
local and therefore differential operators); or

e  a segmentation, that is, either a decomposition of the image domain
into homogeneous regions (‘strong segmentation’), with boundaries or
a set of boundary points or ‘edge map’.

In both cases, the output depends on two variables: a variable x which
denotes the centre of a spatial neighbourhood and a variable ¢ which can be
identified or correlated with

e  the ‘height’ in the visual pyramid (or distance from the first layer: the
retina). This distance corresponds to the biological time between the
‘arrival’ at the retina and the first arrival at a given layer; and

. the degree of globality of the local information in the considered layer,
that is, the size of the neighbourhood in the retina which influences
what happens at z.

To summarize, the output of the vision pyramid is:

either a multiscale image u(t, x); or

or a multiscale ‘edge map’ K(t,x), where t is a parameter which can
be identified with a time of analysis or with a measure of the spatial
globality of the information provided by wu(t,z). The bottom of the
output is the original image u(0,x) = ug(x).

2.5. What basic principles must the visual pyramid obey?

The causality These principles come first from the ‘preattentive’ assump-
tion that no feedback is allowed, the visual information being processed in
parallel through a sequence of filters. This means that what happens at
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Fig. 2. The scale-space visual pyramid.

higher scales cannot influence what happens at lower scales: the pyramid
acts ‘from fine to coarse’. Furthermore, there is no time for taking into
account at scale ¢ what happens at a significantly smaller scale s. So we
assume that the output at scale ¢t can be computed from the output at a
scale t — h for very small h. (Take into account the fact that the visual pyra-
mid is a series of filters through which new visual information is constantly
being processed. So, to look at what happens at a smaller scale means to
‘look into the future’, at newly arriving perceptual images.) To formalize
this relation, we call T; : 7 — F the map which associates an image ug with
its ‘smoothed image’ at the scale t, Tyup. (In the same way, we denote by
T; the map associating a set K of boundaries with a set of boundaries T; K
simplified at scale t.) This mapping is obtained by constructing ‘transition
filters’ which we call ;14 : F — F and hence we have the

Pyramidal Structure (Causality 1) Ty1p = Ty4n,:T:, To =Id. Further-
more, the operator Tiyp will always be assumed to act ‘locally’, that is, to
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look at a small part of the processed image. In other terms, (T;n cug)(x)
must essentially depend upon the values of ug(y) when y lies in a small
neighbourhood of z.

We shall give two formal versions of this ‘locality assumption’. Let us now
just give its ‘physical’ interpretation: if the basic elements of the pyramid
are assumed to be ‘neurons’, this only means that a neuron is primarily
influenced by its neighbours. A clear argument for this is time: only neu-
rons which are close can have an influence without transmission delay. Let
us finish with an intuitive requirement which is called in image-processing
‘causality’. Since the visual pyramid is assumed to yield more and more
global information about the image and its features, it is clear that when
the scale increases, no new feature should be created by the multiscale anal-
ysis: the image and the boundaries at scale ¢ > t must be simpler than the
boundaries at scale ¢t. The causality assumption must of course be formal-
ized. Its formalization has been discussed by Hummel (1986), Koenderink
(1984, 1990a), Yuille (1988), Witkin (1983), Perona and Malik (1987) in the
framework of image processing, by Kimia et al. (1992) in the framework of
shape analysis and by Muerle and Allen (1968), Brice and Fennema (1970),
Horowitz and Pavlidis (1974) in early works on image segmentation.

The result of the discussion in the case of image processing is that causal-
ity must be formalized as pyramidality plus a local comparison principle: if
an image u is locally brighter than another v, then this order must be con-
served some time by the analysis (prevalence of local behaviour on global
behaviour). In formal terms, it can be expressed as the

Local Comparison Principle (Causality 2) If u(y) > v(y) for y in a
neighbourhood of z and y # z, then for h small enough,

(Ttrngu)(x) > (Trgnv)(T).

In the case of edge detection, there are several formalizations, but the
simplest states that no new boundary is created when the scale increases,
that is, Ty K is contained in T3 K if t/ > t.

We finally need some assumption stating that a very smooth image must
evolve in a smooth way with the multiscale analysis. Somehow, this belongs
to the ‘causality’ galaxy, but we prefer to call it regularity and it clearly
corresponds to the assumption of the existence of an infinitesimal generator
for the multiscale analysis.

Regularity Let u(y) = $(A(z — y),z — y) + (p,z — y) + ¢ be a quadratic

form of RY. There exists a function F(A,p,z,c,t), continuous with respect
to A, such that

(Titnpu —u)(x) .
h

F(A,p,z,c,t), when h—0.
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Morphological and affine invariance In addition to the causality require-
ment, we must keep in mind that the pyramid acts on equivalence classes
of images of the form g(ug(Az)), where g is any nondecreasing continuous
function and A any isometry (or any affine map) of the plane. Therefore,
the output should not depend upon % but on the equivalence class. So the
transition operators T;1,: must somehow commute with the perturbations
g and A. In the case of a change in contrast g, this is easily translated into
the

Morphological invariance ¢T;.4; = Tiyp g, which means that change
of contrast and multiscale analysis can be applied in any order. If A is an
isometry, the same kind of relation must be true. Denote by Au the function
Au(z) = u(Az). Then we state the

Euclidean invariance ATy = Ti1r t A.

Let us now examine the case of an arbitrary linear map A. The commuta-
tion relation cannot be so simple because A can reduce or enlarge the image.
(Think of the case where A is a zoom defined by Au(x) = u{Az) for some
positive constant A.) Since the zoom has changed the scale of the image, we
can just impose a weak commutation property:

Affine invariance For any A and ¢ > 0, there exists a C! function t'(t, A) >
0 such that

ATy, 4),0(s,4) = Tt,sA.
Moreover, the function ¢(t) = (9t'/9A)(t, A1d) is positive for ¢t > 0.

This relation means that the result of the multiscale analysis T; is inde-
pendent of the size and position in space of the analysed features: an affine
map corresponds to the anamorphosis of a plane image when it is presented
to the eye at any distance large enough with respect to its size and with an
arbitrary orientation in space. (The general visual invariance should be pro-
jective, but for small objects at some distance, we shall be contented with
the affine invariance.) (See Forsyth et al. (1991), Lamdan et al. (1988).)
The assumption on ¢/, ¢(t) = (dt'/OA)(t,AId) > 0, can be interpreted by
looking at the relation A\(Id)7y = T;(A1d) when X increases, i.e. when the
image is shrunk before analysis by T;. Then, the corresponding analysis
time before shrinking is increased. In more informal terms we can say that
the analysis scale increases with the size of the picture.

Let us point out the fact that the affine invariance must be stated in
such a general framework because we have, up until now, made no attempt
to fix the relation between the abstract ‘scale’ parameter and the concrete
scale understood as having some relation with the size of objects. As for
all future results, they will be true whatever the change in abstract scale
T; — T, provided o is a smooth increasing function: R* — R*. Now, the
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next lemma will permit a full normalization of the scale, thanks to affine
invariance.

Lemma 1 (Normalization of scale.) Assume that ¢ — T; is a one-to-one
family of operators satisfying pyramidality and affine invariance. Then the
function #(t, B) only depends on t and |det B|: t/(t, B) = t'(t,|det B|'/?)
and is increasing with respect to t. Moreover, there exists an increasing
differentiable rescaling function o : [0,00] — [0,00], such that t'(t,B) =
o~ (o(t)| det B|Y/?) and if we set S; = T,-1(y) we have t'(t, B) = t|det B|/?
for the rescaled analysis.

We shall give a proof of this lemmain Appendix B, because it is of particular
relevance in image processing.

To summarize, the multiscale analysis T; must (or may) satisfy:

e Causality Typn = Tigpnd: , Tty = To = Id, and (Tygnu)(z) >
(Tesnev)(z) if u(y) > v(y) for y in a neighbourhood of = and y # x.
In the case of boundary multiscale analysis, this last assumption is
replaced by T: K C T, K if t > s.

e Regularity Let u(y) = 3(A(z—y),z—y)+(p,z—y)+c be a quadratic
form of IRY. There exists a function F(A,p,z,c,t), continuous with
respect to A, such that

(Tthpu — u)(2)
h b d
° Morphological invariance gT;.4 ¢ = Tiyp,9 for any change of con-
trast g.
° Euclidean invariance AT; ;= T;14 A for any isometry A of RN,
e  Affine invariance ATy ¢ = Ty A with t' = |det A|Y/2t and b’ =
|det A|/2h. Notice that the affine invariance implies the Euclidean
invariance.
e (Optional) linearity Tiyp(au + bv) = aTyqpe(u) + bTipne(v). We
add this property because it has been very much in use in computer
vision.

F(A,p,x,c,t) when h—0.

There are therefore five main axioms and we shall see that they allow
us to classify and characterize the theories of multiscale image and shape
processing completely, to unify and to improve several of them.

3. Axiomatization of image multiscale analysis and
classification of the main models

Theorem 1 (Koenderink, 1990a; Hummel, 1986; Yuille and Poggio, 1986.)
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Fig. 3. Linear multiscale analysis (heat equation). Evolution of the original image
given in Figure (1a) (from left to right): (a) t = 10; (b) t = 70; (c) ¢t = 300.

If a multiscale analysis is causal, Euclidean invariant and linear, then it obeys
(up to a rescaling t — o(t)) the heat equation
ou

2 _A
ot~

(that is, u(t,z) = (Tru)(x) obeys the heat equation).

This model of multiscale analysis (the ‘raw primal sketch’) is due (among
others) to Hildreth and Marr (see Marr (1982)) and Witkin (the scale space)
(1983). See also Koenderink (1984) who was the first to state the heat
equation explicitly. More recently Lindeberg (1990) studied the associated
discrete scale space and Florack et al. (1992) showed how to use the heat
equation to find corners, T-junctions, etc. by simple differential operators.

What happens if we remove the linearity axiom? As noted in Perona and
Malik (1988) in their nonlinear theory of scale space, ‘anisotropic diffusion’,
we can get nonlinear heat equations

ou _ F(D%u,Du,u,z,t). (3.1)
ot

The converse implication and a complete study of nonlinear models is
given in Alvarez et al. (1992a):

Theorem 2 (Fundamental theorem.) If an image multiscale analysis T;
is causal and regular then u(¢,z) = (Tyu)(x) is a viscosity solution of (3.1),
where the function F', defined in the regularity axiom, is nondecreasing with
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X".\' ~

Fig. 4. ‘Dilation’ multiscale analysis. Evolution of the original image given in
Figure (1a) (from left to right): (a) t = 5; (b) t = 10; (c) t = 15.

respect to its first argument D2u. Conversely, if ug is a bounded uniformly
continuous image, then equation (3.1) has a unique viscosity solution.

(For a quick proof of this theorem, see Appendix A.)

The particular case of the heat equation corresponds to F(A,p,c,x,t) =
trace(A). As a consequence of this theorem, all multiscale models can be
classified and new, more invariant models can be proposed:

Theorem 3 Let N = 2. If a multiscale analysis is causal, regular, Eu-
clidean invariant and morphological, then it obeys an equation of the form

% = |Du|F(div(Du/|Du|, t), (3.2)
where div(Du/|Du|)(z) can be interpreted as the curvature of the level line
of the image u(t,x) passing by z and F(s,t) is nondecreasing with respect
to the real variable s.

An important particular case is when F is a constant function: if F = +1
or F = —1, then the equation becomes du/9t = |Du| (resp. du/dt = —|Dul),
which corresponds to the so-called morphological erosion when the sign is
‘~’ and to a morphological dilation when the sign is ‘+’ (see Brockett and
Maragos (1992)). Dilation and erosion are the basic operators of the Mor-
phologie Mathématique, founded by Matheron (1975) and his ‘Fontainebleau
School’. The dilation at scale ¢ is defined by

Diug(z) = sup uo(y),
yEB(z,t)

where B(x,t) is a set centred at z: the ‘structuring element’ which is gen-
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NP o

° o

Fig. 5. ‘Mean curvature motion’ multiscale analysis. Evolution of the original image
given in Figure (1a) by using scheme (10.4) (from left to right): (a) ¢t =3; (b) t = 9;
(c) t =14.

erally a ball with radius t. Assume, for instance, that wug is the charac-
teristic function of a set X, then D;ug is the characteristic function of the
t-neighbourhood of X. For the erosion, one simply replaces ‘sup’ by ‘inf’. As
noted by Michel Rascle, another relevant example satisfying the multiscale
morphological axioms and therefore a parabolic PDE is the family of zooms
with ratio ¢,

(Tyuo)(z) = u(t,x) = up(tz).

Indeed, the preceding theorem applies and it is easily seen that the under-
lying equation is
Ju 1
 — Z(Du- 1.
at ~ 7 Pv-2)
Note that this formulation may be useful, the zooming operators on a digital
picture being in no way easy to implement. Now, the preceding examples
have been very particular instances of the equation and there are many other
possibilities for morphological multiscale filtering! If we set F(s,t) = s, we
obtain the ‘mean curvature equation’ (MCM)
0
8—1: = t - |Du|div(Du/|Dul). (3.3)
This equation comes from a reformulation by Osher and Sethian (1988)
of a differential geometry model studied by Grayson (1987) and Gage and
Hamilton (1986). It is also very close to the ‘anisotropic diffusion’ of Perona
and Malik (1987) and to an image restoration equation due to Rudin et al.
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(1992a):
0
8—1; = div(Du/|Dul|).
Now, the most invariant model is new: it is proved in Alvarez et al. (1992a)
that

Theorem 4 (AMSS Model.) Let N= 2. There is a single causal, regular,
morphological and affine invariant multiscale analysis. Its equation is

% = |Dul(¢ - div(Du/|Dul]))'/3. (3.4)

We shall better understand this equation in the framework of shape anal-
ysis: Sapiro and Tannenbaum (1992a,b), who independently discovered the
model as a shape scale space have given it a remarquable geometric interpre-
tation in this framework. Of course, fundamental Theorem 2 can be applied
in any dimension. Let us just state a last example of scale space in dimen-
sion 3 (of particular relevance for medical solid images) (see again Alvarez
et al. (1992a) and Caselles et al. (1993)).

Theorem 5 Let N = 3. There is (up to a rescaling) a single causal,
regular, affine invariant and morphological multiscale analysis, associated
with the equation

2~ IDul(G ), (3.5)

By G(u) we denote the Gaussian curvature, that is the determinant of D?(u)
restricted to Du®. We shall expand more on this subject when looking for
movie analysis equations.

4. Shape multiscale analyses

We could deduce the shape analysis statements from image analysis state-
ments. However, since in this case the axiomatics is particularly simple and
intuitive, we shall list well-adapted principles, which are, however, equiva-
lent to the general image analysis principles. For more details, see Kimia et
al. (1992), Lopez and Morel (1992), Mackworth and Mockhtarian (1992).

We define a shape or (‘silhouette’) as a closed set X whose boundary is a
Jordan curve of IR%. We denote by T;(X) the shape analysed at scale t. X
is identified with its characteristic function X(x) = 1 if z € X and 0 else.
We call multiscale analysis any family of operators (7});>0 acting on shapes
and we set X(t) = T;(X). As before, we shall state causality principles, the
first of which remains unchanged:

Pyramidal Structure (Causality 1) Tiip = Teyp Ty, To =Id. Instead
of the local comparison principle, we shall give a very intuitive statement:
the shape local inclusion principle.
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Fig. 6. Affine Invariant Morphological Multiscale Analysis. Authors: L. Alvarez—
F. Guichard. A multiscale analysis T; associates an image uo(x) with more regular
images u(z,t) = (Tiuo)(z), where ¢ is the scale of analysis. In this experiment, u(t,x)
is computed by the AMSS, du/8t = |Du(t - curv(u))'/® where Du is the gradient of u,
curv(u)(z) = div(Du/|Du})(z) the curvature of the level line of u passing by z. In order
to illustrate the use of the AMSS model as a way of keeping only reliable information
in image analysis, we display on the left-hand column two increasingly distorted (noisy)
versions of an original synthetic image (up-left). The left-down image is obtained from the
left-up by giving 70% of its pixels a random value. In the right-hand column, we display
the respective analyses at the same scale ¢ of these images. Two phenomena are illustrated
by comparing the right and left columns: first, the causality (a smoothing effect), selective
loss of information from fine to coarse; second, the morphologically invariant behaviour.
Unless the level sets of the triangle and rectangle have quite different mean brightness
in the noisy images, their shape is handled by the analysis in the same way. Size of the
images: 128 x 128. CPU time: 21 s.
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Fig. 7. AMSS multiscale analysis. Evolution of the original image given in Fig-
ure 1(a) by using the scheme (10.8) (from left to right): (a) t = 3; (b) t = 9; (c)
t=14.)

B(x,r) X

Fig. 8.

Assume that X and Y are two silhouettes and that for some z € 9Y and
some r > 0, one has X N B(x,2r) C Y N B(z,2r). Assume further that
the inclusion is strict in the sense that X and JY only meet possibly at x.
Then we shall say that the shape X is included in shape Y around x.

Shape local inclusion If X is included in Y around z, then for h small
enough, Ty 1 +(X) N B(z,7) C Tyne(Y) N B(z, 7).

This last axiom implies that the value of Tiyp ((X) for h small, at any
point z, is determined by the behaviour of X near z. We are allowed to
take r infinite. Therefore the shape local inclusion principle also implies
that if a shape is globally contained in another, this order is preserved for
every scale (Mackworth and Mokhtarian, 1992).
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Both preceding principles allow, as we shall see, the shape analysis to be
localized in space and time and we therefore only need to state what the
multiscale analysis makes of very simple shapes in order to specify it. So
we add a ‘basic principle’ which will state what happens to disks. As we
shall see, disks are somehow a ‘basis’ for shape analysis because whenever
we know how they are analysed, we know what will happen to every other
shape.

Basic principle Let D = D(x,1/7) be a disk with curvature 1/r and centre
x. Then Tyyp (D) is a disk with radius p(t, h,1/r) and centre . Moreover,
the function h — p(t, h,1/r) is differentiable with respect to h at h = 0 and
the differential is continuous with respect to 1/r.

The ‘basic principle’ implies that the multiscale analysis behaves in a
smooth and isotropic way. In the following, we set
g(t,1/r) = Qﬁ(t,O,l/T). (4.1)
oh
Note that g(t,s) is defined for t > 0 and s € IR Now in order to define
g(t,0) we must assume that im ¢(t,1/r) exists when r tends to +00 or —oco .
The radius » may be positive or negative, according to the orientation of the
normal 7(z). In the case where the curve is a Jordan curve enclosing a set
X, we take as a convention that 7i(x) is pointing outside X and the curvature
15 negative if X is convex at x, positive else. It may seem natural to assume
therefore that g(¢,x) is odd with respect to x. Indeed, this corresponds
to the assumption that a black disk on grey background and a white disk
behave in the same way.

4.1. The fundamental equation of shape analysis

When a point = belongs to an evolving curve, we denote by i the time
derivative of z, which is a vector of [R*. By curv(z) we denote the curvature
of a curve which is C? at x. Recall that the curvature is defined as the inverse
of the radius of the osculatory circle to the curve at z. The curvature is zero
if the radius is infinite.

Theorem 6

1 Under the three principles (pyramidal, local shape inclusion, ‘basic’),
the multiscale analysis of shapes is governed by the curvature motion
equation

& = g(t, curv(z))ii(x) (4.2)

where ¢ is defined by (4.1).
2 If the analysis is affine invariant, then the equation of the multiscale

analysis is, up to rescaling,

T =(t-curv(z))ri(z) (4.3)
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where « is defined by v(z) = a-z!/% if z > 0 and y(z) = b- z1/3 if
z <0 and a, b are two nonnegative values.

3 If we add that T3(X¢) = Ti(X)¢ (reverse contrast invariance) then the
function g in (i) is odd and we get

@ = (t- curv(z))3i(z). (4.4)

We prove this theorem in Appendix C. By the expression ‘governed by’,
we mean that the equation must be satisfied at any point (¢t,z) of 9X(¢t)
where the boundary of the silhouette is smooth enough to give a classical
sense to both terms of the equation.

Remark It has been proved (Gage and Hamilton, 1986; Grayson, 1987;
Angenent, 1989) that equation (4.2) with g(¢,s) = s has smooth solutions.
This equation has been introduced in picture processing by Kimia et al
(1992a), Mackworth and Mockhtarian (1992) and Alvarez et al. (1992a) in
different contexts. An early version of an algorithm leading to equation
(4.2) is given in Koenderink and Van Doorn (1986). See also Yuille (1988).
Equation (4.4) has been introduced and axiomatically justified (with a more
complicated axiomatic however) in Alvarez et al. (1992a). It has also been
proposed in Sapiro and Tannenbaum (1992a). The existence and regularity
of the solution are proved in Sapiro and Tannebaum (1992b). The axiomatic
presentation adopted here follows Cohignac et al. (1993a).

5. Relation between image and shape multiscale analyses

In this section, we shall show how the AMSS model (1.1) can be deduced
from the shape evolution (4.4). We give in Appendix C proofs of the
axiomatic deduction of this last equation, so that our exposition will be
rather complete. In addition, the shape multiscale analysis equation has
an easy geometric interpretation as an ‘intrinsic diffusion’ which we shall
explain at the end of this section. Since the multiscale analysis satisfies the
obvious inclusion principle that

If ACB then Tt—}-h,t(A) C Tt+h,t(B)7

we can, as well known in the ‘mathematical morphology school’ (Matheron
1975, Maragos 1987), associate with a picture u the set of its level sets

Xou = {(:L‘,y),u(:c,y) > a}'

Then, assuming that each level set is a union of silhouettes, we can simply
define Ti(u) from the multiscale analysis T;(X) of silhouettes by

Morphological Principle For any a, ¢, h and
U XaTt+h,t(U) = Tt+h,t(XaU)-
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Fig. 9. Affine invariant shape recognition made possible thanks to the AMSS model.
Authors: Cohignac-Eve-Guichard-Lopez—Morel. Which numerical implementation
can be done using the AMSS model? We wish, after many iterations of the discrete
algorithm, to be able to recognize shapes. So the numerical algorithm should strictly have
the same invariance properties as the continuous model. In the case of affine invariance,
this happens to be a rather new problem in numerical analysis. We display here the
results of an algorithm which will be discussed later on. These results illustrate the affine
invariance of the analysis. A shape is distorted by affine anamorphoses with respective
eigenvalues (1/2,2), (1/3,3) et (1/4,4) (first quadrant, up-left). The quadrants 5, 6, 7, 8
display the multiscale analyses of these shapes at four successive scales. If we apply the
inverse anamorphoses to the shapes after analysis, they must be the same (if the algorithm
is correct!). This can be checked in quadrants 2, 3, 4.
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Theorem 7 Assume that a multiscale image analysis T} satisfies the mor-
phological principle and that each of the level sets is governed by equation
(4.2). Then T;u satisfies

Ju

5 g(t, curv(u))|Dul. (5.1)

Proof. Let us prove (3.2) at any (z, a) such that u(t,z) = a and u(t,y) = a
implies Du(t,y) # 0 and u is C? at (t,y). The first condition implies by the
implicit function theorem that x belongs to a Jordan curve I' enclosing two
regions I't and '™, with u(¢,x) < aonT~ ,u(t,z) > aon 't and u(t,z) = a
on I'. Set u(t) = u(t,.). The relation X Tiipu(t) = Tiyn 1 Xqu(t) implies
that Ty, " is equal to a connected component of X,u(t + h). Therefore,
the point x(t+h) defined by equation (4.2) with initial value z(¢) = x belongs
to the boundary of X,u(t+h). So we obtain u(t+h,z(t+h))—u(t,z(t)) = 0.
Dividing by h and passing to the limit yields
Ju

E(t,x) + Duf(t,z)z(t) =0

and using equation (4.2) and 7i(z) = —Du/|Du| we obtain equation (3.2).

The Affine Scale Space (ASS) model (4.4) of Sapiro and Tannenbaum
yields a simple geometric interpretation of the AMSS model (1.1). Let us
consider two ways of parametrizing a smooth Jordan curve z(s):

e  either in an Euclidean-invariant way by imposing |zs| = 1; or
e orin an affine-invariant way by setting | det(zs, zs5)| = 1.

In the second case, we say that the curve has been parametrized by its
‘affine length parameter’ s. This parametrization is affine covariant because
|det(Axs, Azss)| = | det A||det(zs, z45)| for any affine map A. Sapiro and
Tannenbaum (1992b) proved (it is an easy computation) that the ASS model
is equivalent to the following ‘intrinsic heat equation

2
—Bxést,t) RG] a;ii’ t), 2(0,8) = zo(s).
So the application of the AMSS model to an image u can be interpreted as
the affine invariant diffusion of all the level lines (isophotes) of u. Therefore
we obtain a nonlinear generalization of the linear classical scale spaces.

6. Multiscale segmentation

Segmentation is acknowledged as the main tool in image interpretation. As
we shall see, the segmentation problem is quite well understood in the frame-
work of multiscale analysis. To define this problem in two lines, let us say
that the objective of segmentation is to find the homogeneous regions of
an image as well as their boundaries. However, the term ‘homogeneous’ is
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extremely vague and in order to state what homogeneity is, one has to rely
either on perceptual experiments or on axiomatic definitions. In any case,
homogeneity may concern clues as different as brightness, colour and tex-
ture. In this section, we shall not discuss what these clues are (this will be
axiomatically introduced in the next section for textures). We shall assume
that the image datum is composed of a finite set of k ‘channels’, each channel
being itself a real image. In the simplest case, there is a single channel, the
brightness. In the colour image case, the actual technology (partly based
on perceptual criteria) yields three channels, i.e. three images of the same
size (red, green, blue). In the case of other clues, like texture elements, the
number of channels is unlimited and experiments showed in the next sec-
tion involve up to forty channels computed from an initial grey level image
and with the same size. The segmentation problem assumes that an initial
multichannel image wug, with ug(x) € Rk, and an initial boundary map Kj,
where Ky is a subset of the image domain with finite Hausdorff length, are
given. The initial boundaries can simply be the boundaries of all pixels. The
segmentation process computes a multiscale sequence (K (t)) of segmenta-
tions, as well as a multiscale sequence of piecewise homogeneous images u(t).
K(t) is assumed to be the set of the boundaries of the homogeneous regions
of u(t).

We shall give simple multiscale principles which will closely determine the
segmentation process. Setting, as usual, T; Ko = K(t), we impose

e Causality K() CK(t)ift<t and T, Ts =T, Tp =1d.
. Euclidean invariance T;; R = RT;,n, for every isometry R.
e Invariance by zooming Let Z) denote the zoom with ration A\. Then

TtZ,\ = Z,\T)‘l/zt.

Finally we need an axiom fixing the relations between the boundaries K (t)
at scale t and the image u(¢). Our choice (see Morel and Solimini (1993)) is
to take the simplest principle, which Mumford and Shah (1988) called the
‘cartoon principle’.

Cartoon Principle u(t) is locally constant in IR? \ K(¢) and equal to the
mean value of 4y on each connected component of IR? \ K(¢).

The causality and cartoon principles nearly fix the type of segmentation
algorithm to be used: it is a regton growing algorithm. Let us define region
3 .
as every connected component of R* \ K(¢). Since, for

t'>t, K({t')cCK(@),

we deduce that the regions at scale ¢’ are unions of regions at scale ¢ (which is
another way of stating the causality axiom). Thus, in order to completely fix
the multiscale analysis, we only need a criterion for region ‘merging’. Mum-
ford and Shah (1988) proposed the following Euclidean and zoom-invariant
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criterion: every segmentation is associated with an energy (which somehow
measures its complexity),

E(u(t),K(t)) = / (u(t, z) — uo(x))? dz + ¢ - length(K (t)).
R\ K (t)

Then two regions of the segmentation will be merged at scale t if and
only if the energy of the resulting segmentation decreases. The associated
‘recursive merging’ algorithm is extremely simple. We start with an initial
trivial segmentation of the image at scale ¢ = 0. In this case, the image
simply is (e.g.) divided into ‘pixels’ (small squares in the actual technology).

Region Growing Variational Algorithm

. Fix ug, Ko as the initial trivial segmentation, where Ky is the union of
boundaries of all pixels.

e A scale t being fixed: for every pair of regions, check whether their
merging decreases the Mumford-Shah energy and, if so, merge them.
Then the new K is obtained by removing the common boundary of
both regions and u takes the mean value of uy on the union of both
regions as the new value.

e  Increment the scale ¢t and go back to the preceding step.

Mumford and Shah (1989) proved that a segmentation which is minimal
for their energy has a finite number of regions with smooth boundaries. It
is, however, impossible to find a minimal segmentation, because the energy
is highly not convex. Therefore, it is useful to get information about the
segmentations obtained by a concrete algorithm computing local minima.
Here is such a theorem, which justifies the use of region growing associated
with the Mumford-Shah energy.

Theorem 8 (Koepfler et al., 1994.) Let us say that a segmentation of
a bounded vectorial image is 2-normal at scale t if no pair of regions can
be merged without increasing the Mumford-Shah energy. Then the set of
2-normal segmentations is compact for the Hausdorff distance and there
is a bound, only depending on t, for the number of regions of a 2-normal
segmentation.

We display in the following several examples of segmentations (Figures
10-11). This section has been kept short, as more than a thousand papers
have been written on segmentation algorithms. Now, Morel and Solimini
(1993), following and updating the terminology of Zucker (1976), have dis-
cussed more than ten classes of algorithms in image processing and have
shown that they are merely variants of the Mumford-Shah energy minimiz-
ing process. Among the many theories which lead to the Mumford-Shah
formalization (or variants), let us mention the ‘snakes’ (Kass et al., 1987),
the survey by Haralick and Shapiro (1985), the stochastic segmentation of
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Fig. 10. Image segmentation by the Munford-Shah criterion. Authors: Koepfler—
Morel. Up-left to right-down: an original satellite image (one single channel), the
boundary map when it has been decided to keep 100 regions, the ‘cartoon’ (i.e. the
associated piecewise constant image) and finally the superposition of the original
image and the boundary map.

Geman and Geman (1984), the Blake and Zisserman ‘weak membrane’ model
(1987), and the region growing algorithms of Brice and Fennema (1970),
Muerle and Allen (1968), Pavlidis (1972), Horowitz and Pavlidis (1974). An
affine invariant version of the Mumford-Shah theory has been proposed by
Ballester and Gonzalez (1993).



26 L. ALVAREZ AND J. M. MOREL

7. An example: texture discrimination

Some theories of low level vision happen to be axiomatized and these can
therefore be matched with the mathematical axiomatics which we developed
above. This is the case for the Julesz Texton Theory (Julesz, 1981; 1986;
Julesz and Kroese, 1988), which attempts to give a formal account of how
human perception can discriminate textures in a few milliseconds. In order
to understand the intuitive concept of terture, it is sufficient to look at the
texture pair in Figure 11. The discrimination of both textures is easy for hu-
man perception, therefore whatever the computation involved in it is should
also be. In order to confirm his texton theory experimentally, Julesz cre-
ated pairs of simple different shapes, which were taken as building elements
for creating two different but undiscriminable textures. This showed that
not all different texture pairs are discriminable. Look at Figure 12 where
a region of ‘10s’ is surrounded by ‘5s’. Unless these shapes are individually
quite distinguishable, they become quite equivalent when they are building
elements of a ‘texture’.

The axioms of shape analysis can be matched with the (not completely
formal) axiomatics proposed by Julesz for his theory of preattentive tex-
ture discrimination. Therefore the texton theory can be numerically tested,
and the result is quite different from the previous attempts and surpris-
ing. Indeed, previous attempts at formalization were based on linear image
multiscale filtering followed by nonlinear mechanisms compatible with phys-
iological data. One of the most conclusive in this way is due to Malik and
Perona (1991), whose algorithm experimentally matches the human perfor-
mance in texture discrimination. Now, as we shall see, a faithful implemen-
tation of the texton theory yields hyperdiscrimination! Julesz created pairs
of textures which are undiscriminable for the preattentive vision but not for
the algorithm deduced from his axioms.

In order to give a brief account of the texton theory, let us say that
Julesz assumes that in perception only the local means of the curvatures
and orientations of the shapes (or ‘textons’) of level sets are retained. These
local means are called texton densities. Thus, every image ug, supposedly
containing textures, is associated with a multichannel image u;(¢,2), i =
1,2,...,k where each image u;(t,x) stands for the density of the texton of
type ¢ at scale £. Then a segmentation process, computing ‘texture gradients’
is effectuated and yields the boundaries of the textures.

Therefore, the Julesz theory can be immediately translated into the mul-
tiscale analysis framework developed above. The translation yields a texture
segmentation algorithm authorized to check how valid the texton theory is.
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Texture Segmentation Algorithm

1 Apply the fundamental equation (AMSS) to the image: it is the only
multiscale analysis allowing an invariant computation of multiscale cur-
vatures and orientations.

2 Texton densities can be deduced as local means of curvatures and ori-
entations at several scales.

3 Assuming that the analysed image only contains two texture regions,
apply the region growing Mumford-Shah algorithm and stop the seg-
mentation process when only two regions remain. If the regions are
those predicted by the theory (and if the contrast of densities between
them is strong), there is discrimination.

Let us briefly state how we organize the numerical experimentation of
Julesz theory by using the above discussed scale-space algorithms.

7.1. Formalization and computation of textons densities

Let ug(z) be an image and u(t,x) its multiscale analysis by equation (1.1).
Then the curvature and orientation at scale ¢ and location = are given re-
spectively by curv(u)(z) and Du/|Du|(z) which are both well defined and
computed by equation (1.1).

Notice that textons can be white on black or white on black, so we define
for any 6 € [0, 7] and ¢ > 0 the ‘density on a ball B(x, A) of textons at scale
t and orientation 8’ by

G () * (Lo curv* (u)(t, 2))

G A () * (log 4 curv™ (u)(t, T))

where Oy 49 is the set of points where Du/|Du| = (cos ¢, sin ¢) satisfies |6 —
¢| < 60 and Gp,(z) is the isotropic Gaussian with variance A. By at we
mean max(a,0) and by ™, max(—a,0).

Then we get a formal definition of texton densities at each scale and
orientation. Based on the obtained texton density channels, a segmentation
of the image can be achieved. If the Julesz theory is correct, all the pairs of
textures which we discriminate should be clearly discriminated by at least
one of the texton densities.

Conversely, any pair of undiscriminable textures should be undiscrimi-
nated by all channels.

The basic facts which can be discovered by experimentation (Figures 11
and 12) are following. The textures proposed by Julesz, and most textures
proposed in the literature as discriminable are easily discriminated by texton
densities even rougher than those described above: Indeed, it is sufficient
to compute global curvature densities, that is, we take 66 = 7 and do not
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Fig. 11. Segmentation of natural textures. Authors: Koepfler-Lopez-Morel. On
the left: two natural textures extracted from the Brodatz collection. On the right,
three different Brodatz textures. Below: boundaries computed by the multichan-
nel segmentation algorithm based on the Mumford—-Shah functional. The 18 used
channels are curvatures at different scales. Note how the same texture is repeated
twice on the left of the right-hand image. The algorithm, which only takes into
account local mean values of curvature, yields the right segmentation.

take into account orientation. The same process is followed for the Julesz
undiscriminable textures!

The computational theory of texture discrimination which we have pre-
sented is the most complete attempt at computationally discussing the
psychophysical theory of textons. It is, however, not the first successful at-
tempt. The first one, already mentioned, is due to Malik and Perona (1991),
who modelled texton density computations by a combination of linear ori-
ented filters and nonlinear mechanisms. The Malik and Perona algorithm
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Fig. 12. Verification of Julesz’ theory of textons which yields hyperdiscrimination
algorithms. Experiment: Lopez—Morel. Julesz created textures which are undiscrim-
inable for the human preattentive vision, as apparently predicted by the texton theory.
However, the AMSS model, whose requirements match the axioms of the texton the-
ory, leads to discriminate—undiscriminable texture pairs. Up-down and left-right: (a) a
preattentively undiscriminable texture pair, uo; (b) u(t) = Tiup: image obtained after
application of the multiscale analysis T; for ¢ = 7 pixel units; (c) negative part of the
curvature, curv(u(t))”; (d) positive part curv{x(t))*; (¢) segmentation obtained by the
Mumford-Shah piecewise constant model applied to the two-channel image of the curva-
tures; (f) negative curvature curv{ug)™ of ug. This last image shows that curvature-based
discrimination was not possible on the original image. In order to explain the hyperdis-
crimination of the AMSS model, the texton theory must be made more precise (Lopez
and Morel, 1992).
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matches the human preattentive vision and does not exceed it, as the above
presented algorithm does. It is, however, easily seen by looking at their
algorithm that it essentially computed curvature-based features, with less
and less accuracy as the scale increased. The same article presents a very
precise account of the previous attempts to make texton theory computa-
tional. (See, in particular, Treisman (1985), Voorhees and Poggio (1987),
Enns (1986).)

8. Movie multiscale analysis

In this section, we return to scale space theory and look for its adaptation
to movies. It is rather easy, since we still stay in the framework of the
Fundamental Theorem 2. Indeed, a movie can be modelled as a 3D image,
u(z,0), where z € IR? and 9 € R is the time parameter. The statement
and justification of the causality axioms remain unchanged, as well as the
morphological invariance. Of course, the Euclidean and affine invariance
make less sense in 3D, and we shall keep their 2D versions, the 2D-Euclidean
invariance and the 2D-affine invariance, where isometries (respectively affine
maps) are restricted to the image plane. We, however, add two specific
axioms related to motion.

e Time affine invariance For any affine time rescaling A, : u(z,8) —
u(z,ad + b), there exist t'(a,t) such that Ty A, p = AgpTy.

e  Galilean invariance Denote by B, any Galilean motion operator de-
fined by Byu(z,8) = u(x — v6,6). Then B,(Tiu) = T;(Byu).

The Galilean invariance means that the analysis is invariant under ‘travel-
ling’, that is motion of the whole picture at constant velocity v does not
alter the analysis. In the following, we distinguish the ‘spatial gradient’
Vu = (ug,uy), and the space-time gradient, Du = (uz, uy, ug).

Theorem 9 If a multiscale analysis of movies is causal, regular, time-
translation invariant, space-Euclidean invariant and morphological, then it
is governed by the equation

%% = |Vu| F(curv(u), accel(u), t). (8.1)

If, in addition, we assume the analysis to be time-affine and space-affine
invariant, the equation is (up to a rescaling)

Ju

at

for some ¢ € [0, 1].

= (|Vu| curv!/3 ()19 ((|Vu|sgn(curv(u)) accel(u))™)?, (8.2)

(See Alvarez et al. 1992a,b.) In the above formulae, we use the convention
that the power preserves the sign, that is a? = |a|%sgn(a). Hence, when
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g = 1, we obtain the equation

2 = IDu(Guy)*, (83)
ot

This equation was mentioned in Section 2 as the only affine invariant
morphological scale space in R. of course, this full affine invariance has no
meaning for classical movies: what is the meaning of a rotation involving
spatial and time variables? Now, in the field of relativity theory, such invari-
ance makes sense because the Lorentz transform is nothing but a spatial-time
rotation. In other words, when ¢ = %, we have an equation which is both
Galilean invariant and relativist invariant. We did not explain what the dif-
ferential operator accel(u) is. (As for curv(u), it is simply the curvature of
the spatial level curves, as in Section 2.) We could give the explicit formula
for accel(u) in terms of the first and second derivatives of u, but this would
prove disastrous, since the formula takes several lines. We shall use two ways
to characterize accel and justify its name of ‘apparent acceleration’. Let us
first explain a classical notion in motion analysis: the apparent velocity. As-
suming that a movie displays moving objects, let us call z(#) the trajectory
of a point of one of these objects. If we make the assumption that the object
is Lambertian, which means that the light that it is sending to the camera
is constant, then we can ensure that u(z(6),0) = C for some constant C.
Differentiating with respect to 8 yields (Vu,z(6)) + ug = 0. So we see that
the component of the velocity in the direction of the spatial gradient can be
recovered from the partial derivatives of u:

Definition We call apparent velocity of a movie u(x,8) at point (z,8) the
scalar

v1 = —ug/|Vul.
Now we are in a position to justify (and define) accel(u):

Lemma 2 (Interpretation of accel.) Consider a picture in translation mo-
tion u(z,8) = w(x—f(f ¥(r)dr), where ¥(6) is the instantaneous real velocity
vector. Then the apparent velocity v; is equal to the true velocity in the di-
rection of the gradient, (¥, Vu/|Vu|). Let V = (7, 1) be the real space-time
velocity. Then

accel(u) = —(Dvy, V). (8.4)

The first result is easy to check. The second formula can be taken as
a definition of accel and shows that in the case of objects in translation
motion, accel(u) is the derivative of the apparent velocity in the direction
of —Vu. This is why we call it ‘apparent acceleration’. For a proof, see
Alvarez et al. (1992a,b) or Guichard (1993).
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The second way of explaining what accel is consists in using Guichard’s
(1993) numerical approximant of it, which has proved essential when dealing
with actual movies. Normal movie display series of frames where objects
may jump more than 3 (and up to 50...) pixels from one frame to the next.
Indeed, quick motions may let an object jump from one side of the screen
to the other side in a very few frames. So, real movies are dramatically
undersampled in time, which does seem to affect the trained zapper, but
makes classical (local) numerical schemes impossible. So we define a nonlocal
search space for the ‘possible velocity vectors’,

W = {V = (a,8) for all o and 8 in R}.
Theorem 10
|Vau|(sgn(curv(u)) accel (u))* (8.5)
(|lu(z —wy,8 — AB) — u(z, 0)|

= min —
wi,wzeW Af
+ [u(z + wa, 0 + AF) — u(z, )| + [(Vu,wy —ws)|) + o(1).

Interpretation Of course, for numerical experiments, we shall not compute
the minimum for all vectors in W, but only for the vectors on the grid. We
have two differents parts in the second term: the first part is the variation
of the grey level value of the point z, for candidate velocity vectors: w;
between 8 — A8 and 6, and ws between 6 and 6 + Af. This variation must
be as small as possible, because a point is not supposed to change its grey
level value during its motion. The second part is nothing but an ‘apparent
acceleration’, that is, the difference between w; and ws in the direction of
the spatial gradient |Vu.

Since movie analysis theory is very recent and computationally heavy
(but not desperate), it has not yet received technological applications. The
most promising applications at hand are detection of hidden trajectories and
denoising of movies. Both are done in the same way, by simply applying
the equation to a movie at some small scale. As can be deduced from the
equation itself, a trajectory will be easily eliminated if either its acceleration
is high or the moving object is small (and therefore with high curvature).
The multiscale analysis acts like a sieve, by removing first all the most erratic
trajectories, and leaving as ¢ — 400 only the Galilean trajectories. (Which,
by the Galilean invariance principle, remain unaltered.) This phenomenon
is illustrated in Figures 13 and 14.

9. Invariance and stability requirements for numerical
schemes of the AMSS model

In order to compare schemes, we shall fix in this section a list of formal
requirements which derive from the axiomatic analysis developed above. We
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Fig. 13. Eliminating parasites in a real movie (Author: F. Guichard). We present
(up) a sequence of three images of a real movie where a man is talking and moving
his head. Notice that in the second image we have added two black rectangles. In
the middle and down, we present two states of the multiscale analysis of the above
sequence.

first have the properties which imply convergence of the schemes towards the
equations, and second the invariance properties of the equations themselves.
All schemes will be defined as the iteration of some nonlinear discrete filter,
which we call T. We set u™ = T"™ug, where ug is the (discretized) initial
image. All schemes T' will depend on a scale step At and a space step Azx.
We shall consider different discrete representations of u™ (see Figure 1):

e  The classical discrete representation on a grid up; = u™(i,7), with
1 <1< N,1<j< N. Theimage is the union of the squares centred
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Fig. 14. Movie example. (Author: F. Guichard). Up: original noisy movie of a
square and a point in uniform motion, 24 images 64 x 64. Down: the same movie
analysed at a small scale, ¢ = 0.3. Spurious trajectories due to noise are eliminated.
Only the ‘true’ trajectories remain: the square and the point.
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at the points (7, j), and the brightness in each square is constant: u(z, 7).
Each one of the squares is called pizel (for ‘picture element’).

e  The representation of u as a collection of all its Jordan level curves. In
order to define these curves, one considers the level sets X, = {u(z) >
a}, where a admits, for technological reasons, 255 values. Thus each
X, is a finite union of squares in the initial image ug. By elementary
planar topology, its boundary X, is a finite union of Jordan curves,
which we call ‘level curves’. Conversely, in this discrete framework, ug
can easily be reconstructed from all its Jordan level curves. So we call
this numerical representation the ‘level curve’ representation. By the
previous sections, we know that it is equivalent to applying AMSS to
the initial image or to running ASS on each level curve. But of course,
these are very different ways of handling an image in practice.

e  We have now to say how we represent each level curve C(s). A first
solution is to discretize it as a polygon C(i),i = 1,..., N where the C(7)
have real (floating point) values. Then the description of the image will
be very precise, with an ‘underpixel’ accuracy.

e  Another solution to represent the level curves is to associate them with
their distance function, which is a Lipschitz image. Of course, this
representation is heavy since an image can have many level curves (more
than pixels) and each becomes associated with a new image. However,
the interest in this representation is that, as the distance function is
Lipschitz, classical finite difference codes are easy to implement and
we avoid the direct programming of a finite element method for curve
evolution (Osher and Sethian, 1988). To visualize this representation
on the screen, we use the following distance function (see Figure 1).

up; = 128 4+ dist((¢,7),C) if (¢,4) is not surrounded by C(s)
and
u;'; = 128 — dist((4,5),C) if (¢,7) is surrounded by C(s).

Let Hy, R, and A the operators defined by Hjyu(z) = u(Az), Ru(z) =
u(Rz) where R is an isometry of IR?, Au(z) = u(Az) where A is a linear
application of IR?. Since the schemes to be considered will be very different
in structure, we cannot state all following properties in a completely formal
way. What they mean in each particular case will be clear in context.

. [Consistency] We shall say that a scheme is consistent if the dis-
crete operator T (which only depends upon Az and At) tends to the
differential one (the second member of AMSS or ASS, MCM), when
the steps Ax and At tend to 0 in a suitable way.

. [Convergence] V¢t T"u — Tiu a.e. when At, 1/n and Az tend to 0
in a suitable way. (T; denotes the continuous multiscale analysis under
consideration.)
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. [L>® stability] Let ¢, d be real numbers. If ¢ < u{z) < d then
c<Tu(z) <d.

. [Order Preserving] If w(z) > v(z) for all  in R?, then (Tu)(z) >
(Tv)(x).

. [Morphology]l For all nondecreasing functions h: Th(u) = h(Tu).
This means that the level sets are handled independently by the discrete

operator.

. [Isom. invariance] TRy = RyT.

. [Affine invariance] TA = AT for any afline map with determinant
equal to 1.

In the following sections, we define schemes and discuss which of the above
properties they satisfy. As must be clear from the above list of requirements,
as well as from the axiomatic analysis of the first sections, consistency is by
no way a sufficient criterion for a good scheme in image analysis. The algo-
rithms we look for must satisfy as much as possible all causality and invari-
ance properties, and consistency, though necessary, should be a consequence
rather than a primary requirement.

We shall not only discuss the AMSS model, but also the Mean Curvature
Motion (MCM) equation. As we have shown, the MCM model has all the
desirable properties except for full affine invariance. (It is, however, Eu-
clidean and zoom invariant.) Therefore, it can prove quite useful in image
processing and shape recognition. In addition, as we already have seen, it
has been very much used by the image processing community and there is a
rich list of attempts to run MCM (or algorithms which a posteriori prove to
be equivalent to MCM). This will help us when we come to discuss schemes
for the AMSS model. Of course, this last model is still much more puz-
zling, because unless it is written as a PDE, its behaviour is, because of the
affine invariance, highly nonlocal (a circle is equivalent to an ellipse of any
eccentricity!).

10. Finite difference schemes for the AMSS model

10.1. Mean curvature motion

We start with the ‘MCM’ equation given by

te = [Vu] curv(u) = ugum - 2u21uyuzy + uiuyy.
uy + uy
In order to discretize this equation by finite differences we shall introduce
an explicit scheme which uses a fixed stencil of 3 * 3 points to discretize the
differential operators. For simplicity, we assume that the spatial increment
Az is the same in the z- and y-axes. We approach the first derivatives u,
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L4 L2 L3
-4L0

L1 L1

L3 L2 L4

Fig. 15. A 3 x 3 stencil.

and uy at a point (7, 5) of the lattice by using the following linear scheme:

2(Uig1,j — Uim1,5) F Ui j41 — Uic1 j1 + Uig1j—1 — Uin1,j—1

(U:c)i,j = AAT
+0(Az?)
02U = Uig—1) F Uikl 41 — Uigd o1+ Uim1 b1 — Uim1 -1
(uy)i,j - AAT
+0(Az?).

Denoting by € the direction orthogonal to the gradient of u, one easily
sees that |Vu|curv(u) is equal to ug.. We have

— Uy Uy

€ =(—sinf,cosb) = ,
\/ui—i-u% \/u%+u§

and

Uge = sin Qug, — 2sin @ cos Uzy + cos? Uyy- (10.1)

We want to write uge as a linear combination of the values of u on the fixed
stencil 3¥3. Of course, the coefficients of the linear combination may depend
on . Because the direction of the gradient (and then ¢) is defined modulo
7, by symmetry we must assume that the coeflicients of points symmetrical
with respect to the central point are the same (see Figure 15).

In order to have consistency, we must find Ag, A1, Az, A3, A4, such that

1
Az?
+A3(wi-1,5-1 F Uit1,j+1) + Aa(®i-1,41 + Uiy15-1))
+0O(Az?). (10.2)

(uge)ij = (—4Aoui; + A1 (wig1,; + uim1j) + Ao(uiji1 + wij—-1)
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We write
Uip1,; = Ui j + Axug)i; + %Amz(um)i,j + O(Az3),

and the same relation for the other points of the stencil. By feeding (10.2)
with these relations and by using relation (10.1), we obtain four relations
between our five coefficients

/\1(9) = 2/\0(9) - sin2 9,

/\2(9) = 2/\0(9) - COS2 6,

A3(0) = —Xo(8) + 0.5(sin B cos § + 1),

A4(0) = —Xo(0) + 0.5(—sinBfcosf + 1).

(10.3)

There remains one degree of freedom for our coefficients given by the
choice of A\g(#). We shall choose \g(#) following the stability and geometric
invariance criteria. Denoting by u;’; an approximation of u(tAz, jAzx, nAt)
we can write our explicit scheme as

ul = + At(ugy)i s (10.4)

Note that this scheme can be rewritten as

1

n+1 __ n

i E: Qi Uiy k51
kJi=—-1

[

where ay; satisfy Z,lc,l:_l o= 1.

The following obvious lemma shows a general condition for having [L*>
stability] in this type of scheme:
Lemma 3 Let a finite difference scheme be given by

1

T(w)ij = Y. OkUitkj+ls
k=1

where oy ; satisfy

1
Z ak,l = 1.

kl=-1
Then the scheme satisfies [L™ stability] if and only if ax; > 0 for any
k,l.
Proof. If agy > 0 for any k,l, set min = inf; j{u;;}, max = sup; ;{u;;}
and take a point (¢,7). Then [L> stability] follows from the inequality:

1 1 1

min = Z o min < Z Ok [Uip ke jl = (Tu);; < Z Q ; MaX = max.
kl=—1 kl=-—1 kl=—1

On the other hand, if there exists a,;, < 0 then choosing u and (¢, j) such
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that witrg,j+i, = min and u;4x j4¢ = max for any other k, [, we obtain

1
(Tu);; = Z Qg | TNAX + g [ MIN = max +a, i, (min — max) > max
kstko L#lo

and therefore [L™ stability] is violated.

Following this lemma, in order to have [L*™ stability] in the scheme
(10.4) we must seek for Mg such that Aj, Aa, A3, Ay > 0 and (1 —4Xe/A2?%) >
0. Unfortunately, because of the relations between our coefficients, it is
impossible to obtain these relations, except for particular values of § =
(0, iw, %71’, ...). Indeed, We remark that for 6 in [0, iw],

AL > A2 and Az > A4
But
A2(0) > 0= A(0) > %cosQ(Q)
A1(0) > 0= Xp(0) < %(1 — sinfcos §).
So, we cannot find Ag(€) satisfying both inequalities, since
%cos2 0 > 1(1 —sinfcosh).

Then, if we choose \y(6) > %0052 6 we have A\4(0) very negative. If we take
Xo(0) < %(1 —sinf cos ) we obtain A2(6) very negative. We prefer to choose
Ag between both functions, and then to have Ay and A4 negative, but slightly
(see Figure 14).

On the other hand, if we impose on A the following geometrical require-
ments:

(i) Invariance by rotation of angle %W
)\0(9 + %71') = /\0(9)

(ii) Pure diffusion in the case § = 0, %w, e

Ao(0) = 0.5.
This condition implies that A3(0) = A3(0) = A4(0) = 0.
(iii) Pure diffusion in the case 8 = %ﬂ', %W, e

Ao(§7) = 0.25.

This condition implies that A;(17) = Ao(ir) = As(3m) = 0.
(iv) Symmetry with respect to the axes i + 7 and 7 — j,

/\0(%7( - 9) = /\0(9)
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Search of the optimal Ay

0.5 T T T T T T
0.5 — cos?(8) + cos*(§) —
0.45 cos?(6)/2 —
(1 — sin(8) cos(8))/2 —
04 | -
Ao(6)
0.35 - -
03 -
025 { | { 1 1 |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
0
Fig. 16.

We remark that, by the above conditions, it is sufficient to define the func-
tion Ag(#) in the interval [0, 4l7r] because it can be extended by periodicity
elsewhere.

We have tested two choices for the function Ag(#) using the trigonomet-
ric polynomials as basis. The first one corresponds to an average of the
boundary functions:

Xo(0) = ;i—(cos2 6+ 1 —sinfcosh). (10.5)

As we shall see this choice is well adapted to the ‘affine curvature motion’
equation. However, if we extend this function by periodicity, the extended
function is not smooth at m. If we seek for a smooth function for Ag(8),
we must impose Aj(0) = Aj(37) = 0. The simplest polynomial, of degree as
small as possible, satisfying the above conditions, and between both bound-
ary functions is

Ao(8)) = 0.5 — cos? fsin? 4. (10.6)

We deduce the values of the other s using (10.3). For instance with the
above choice of \y(#) we have

A1(8) = cos? §(cos? 6 — sin? 8),
A2(8) = sin? O(sin® 8 — cos? §),
A3(8) = cos? @sin? 6 + 0.5sin 6 cos 6,
() = cos?fsin® @ — 0.5sin f cos b.
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We have tested this scheme in a workstation and we have noticed that if we
impose a ‘natural’ stability condition such as

At 1

N9 S o

Az? — 2
then the algorithm has good behaviour and remains stable in the sense that

there exists experimentally a (small with respect to 255) € > 0 such that for
any n € Nand (i, j),

—e+influl;} < ul; < sup{ul}+e
3, 1’7]

10.2. The AMSS model

We will use the ideas developed in the above section. We rewrite the AMSS
equation (1.1) as

us = (|Vuf? curv(u))l/3 = (uium — 2UgUylUgy + uguyy)l/:i. (10.7)

We remark that
IVl curv(u) = |Vu|tug

where € corresponds to the direction orthogonal to the gradient. Therefore,
in order to discretize this operator, it is enough to multiply the discretization
of uge presented in the above section by |Vu|?2. We choose A\o(6) given by
(10.5) because it corresponds to a trigonometric polynomial of degree two
and then multiplying it by |Vu|? the coefficients

mi = |Vul*Ai,i=0,1,2,3,4,
are polynomials of degree two with respect to u; and u,. Indeed, we obtain
for 6 € [0, §7]

1
Ax2(
+03(Uiz1,5-1 + Uit1,54+1) + Na(tiztj41 + Uit1,5-1))
+0(Az?),

(IVultuge)i; = —4noui; + m(Uit1,; + wio1,5) + M2(%i 541 + Ui j—1)

where 79, 71,12, 73,74 are given by
o = 0.25(2u2 + ul — ugzuy),
m = 0.5(2u2 — u% — Uglly),
Ny = 0.5(u§ — Ugly),
n3 = 0.25(u? + 3uzuy),
M4 = 0.25(uy — uguy).

Finally, the finite difference scheme for the AMSS equation is

WP = + At Ve Pl (10.8)
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We have tested this algorithm and we have noticed that in this case the
condition for the experimental stability (in the sense presented in the above
subsection) is

At 1

b el

Azr? ~ 10
Remark The finite difference schemes that are presented satisfy
[Consistency] and we conjecture [Convergence]. Morphological invari-
ances are obtained asymptotically by taking a little time step At. The
experimental results presented in Figures 5 and 7 have been obtained by
using these schemes with Az = 1 and At = 0.1 in the case of MCM and
At = 0.01 in the case of affine curvature motion. One has to take At that
small because unless experimental stability is achieved with Af < 0.1, the
experimental affine invariance needs At < 0.05.

11. Morphological (set evolution) schemes
11.1. A theoretical scheme

In this subsection, we discuss theoretical (only discretized in time) schemes
inspired by the Mathematical Morphology School. These schemes will be, in
contrast to the above presented finite difference schemes, fully geometrically
invariant and stable. Now, as we shall see in a latter subsection, their
implementation on a grid is problematic and they will only be practically
implementable by working with the ‘Jordan level curve’ representation of
the images (Section 11.3). Denote by C a set of convex sets which is stable
either by isometries or by linear maps. For example, we can take for C the
set of disks, ellipses or triangles,.... For all ¢ > 0, let us set

Ci(z) = {B € C, area(B) = t7/2, and z is the barycentre of B}.

Then we define two operators

ISi(u)(s) = nf (sup(u(y),
Shiw)@) = sup (inf(u(y)).

BeCi(x) YEB

For example, if we take for C the set of disks, then IS; is by definition the
‘dilation operator’ with radius ¢, and S1; is the ‘erosion’ with radius ¢, and
these are the basic operators of the mathematical morphology discussed in
Section 3 (see Serra (1982), Maragos (1987)). If we impose that C is stable
by all affine maps (for instance C can be the set of all ellipses), we obtain
‘special’ morphological operators which clearly are affine invariant, because
C, is unchanged under any affine map with determinant 1.

Consider the schemes

(i) w™" = ISan(u"),
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(i) u™! = STa.(u™).

It is proved in Guichard et al. (1993) that scheme (i) is consistent with
:he equation

%%L = |Du|(curv*(u))'/?
vhile scheme (ii) is consistent with the equation

au _ _ 1/3

5 |Du|(curv™ (u))*/".

In order to approximate equation (1), one can alternate affine closing and
fline opening and one is led to the (consistent with AMSS) scheme (first
nnounced in Cohignac et al. (1993b)):

utl/2(z) = in sup(u”
" W) = af(sup @), -
wz) = sup (inf(u"*2(y))). '

BeCi(x) yeB

Let us end with a variant of the schemes (i), (ii) and (iii) which is con-
stent with MCM. Catté et al. (1993) proved that if one takes for C the
st of all segments in the plane, then scheme (iii) converges towards the
[CM model. We shall explain in the next sections why this type of scheme,
1ugh fully invariant in theory, can hardly be implemented on a fixed grid.
owever, it can, as we shall later see, be well adapted to the ‘Jordan level
irve’ representation of images.

[.2. Iterated median filters and curvature motion

orphological schemes for MCM have been proposed by Koenderink and
an Doorn (1987) and Merriman et al. (1992). They define a weighted
edian filter which weighs the contribution of points y close to a point x
:cording to a Gaussian law of distance. So the algorithm can be rewritten
vhen applied to a characteristic function 7i° of a level set).

’eighted median filter
Let @° be a binary image:

@9(x) =1, if x belongs to the level set E
i%(z) =0, else.

We solve the heat equation, with initial datum %", for a small time Af,
by a convolution with a Gauss function. We obtain a new function v™.
We set (median filter)

{ a"t(z) =

1
a"tl(z) =0, else.



44 L. ALVAREZ AND J. M. MOREL

4  We turn back to step 2.

Barles and Georgelin (1992), proved that this theoretical scheme is con-
sistent with and convergent to the MCM evolution of the boundary of E.
Earlier works by Yuille (1988) and Mascarenhas (1992) have also proved
the consistency. However, we shall see that its implementation on a fixed
grid is problematic. A simpler and obvious discrete implementation of the
preceding weighted iterated filter on a grid was proposed long ago by the
Mathematical Morphology School. If A is a finite set of real numbers, we
call med(A) = a any real number such that

Card{r € A,r > a} = Card{r € A,r < a}.

Of course, the possible as make an interval and if we want to specify a, we
take for a the middle point of this interval. Then a classical morphological
filter, with well-known ‘denoising’ properties is the original ‘iterated median
filter’ (Matheron, 1975; Serra, 1982; Maragos, 1987)

(iv)  w""(z) = medyen(u"(y))-

This filter (where B is a circular fixed stencil around z) can be viewed
as a simplification of the Gaussian-weighted median filter, where the Gauss
function has been replaced by the characteristic function of a disk.

Let us now pass to discrete versions on a grid. Among the schemes dis-
cussed in this article, the morphological schemes (i)-(iv) discretized on a
fixed grid are the only ones to be both morphological and order preserving
(whatever the discretization of sup, inf, med on the grid is.) They are also
consistent. Now, they do not have all geometrical properties. They only
satisfy the geometrical invariances of the grid and are by no way scale in-
variant or affine invariant. So in practice they prove to be useless schemes
when discretized on a fixed grid: because of the lack of rotational invariance,
they make corners appear in the shapes with sides parallel to the principal
directions of the stencil. However, since these schemes are the only ones
to be fully morphological and monotonic, it is very desirable to have them
implemented in one way or the other. There is, however, no cheap solution:
either one uses grid refinements or one adapts these theoretical schemes to
the Jordan level curve representation (Section 11.3).

Let us say a little more about the consistency of these schemes when
discretized on a grid. Unless consistency is proved, in practice they are not:
curv(u) is incorrectly calculated. If we use a fixed stencil, it will simply be
computed as equal to zero. Indeed, it is well known in computer graphics
that the curvature of a discretized circle is impossible to compute accurately
on a fixed window unless this window is very large: if e.g. the radius is
equal to 20, the window should have a width of at least 12 pixels to yield a
roughly correct guess of the curvature. If the window is, say, 5 pixels wide,
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the curvature will simply be implicitly computed as equal to 0 by a median
filter and so we shall have u™*! = 4", which stops the evolution. In other
words, when At tends to 0, the scheme tends to an equation

Ou/dt = |Du|F(curv(u))
where F is defined by

s, ifs> C,
F(s)z{ 0, if —C <s< C,

s, ifs< —-C,
and C is a constant depending on the grid step. So consistency is in practice
not true; there is a thresholding effect on the curvature. A striking example
of the lack of consistency can be seen in Figure 17 the iterated weighted
median filter (with an 8 % 8 stencil) is applied to both a grey level image
(left down) and a binary image (left up) which is one of its level sets. The
right-hand images display what happens when n — co: the displayed images
remain steady under the median filter because the curvature of all level sets
is implicitly computed as equal to 0.

11.8. Geometrical curve evolution schemes

Curve sampling problems We have seen in Section 5 MCM and the
AMSS can be reformulated as intrinsic heat equations,

C(t,s) = 8C(t, s)/ds®

where s stands for the length parameter along the curve in the first case and
for the ‘affine length’ parameter in the second. This formulation suggests
a computationally cheap implementation of MCM, which was developed by
Mackworth and Mocktharian (1992).

Intrinsic heat equation

e  Discretize Cj as a polygon with vertices C(z),¢ = 1,..., N. Parametrize
this polygon with length s.
e  C, being given, together with its length parametrization, convolve it

with a discretized Gaussian filter with (small) variance 6t: Cp1(i) =
(G x Cr)(3).

e  Reparametrize C,, 1 with length, which yields C,41(7) and go back to
the previous step.

This type of algorithm is very accurately scale invariant and isotropic and
satisfles, in practice, the local shape inclusion principle when 6t is chosen
small enough (close to the pixel size). The consistency of such a scheme
is easily proved but the convergence is, as far as we know, unproved. One
could be willing to extend this kind of scheme to the ASS model: it suffices
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to compute the affine length instead of the Euclidean one in the last step.
This is, however, impossible. Indeed, it is easily seen that any C? curve (for
which affine length is well defined) can be approached in C! by C! curves
with affine length tending to zero. This is due to the fact that any straight
line has zero affine length. Conversely, every polygon can be approximated
by C? curves whose affine length tends to zero. So the computation of
the affine length makes no computational sense in the irregular context of
shapes and images. There has, however, been some attempt to base schemes
for the ASS model on discrete versions of affine length: Bruckstein et al.
(1992) define the affine length of a polygon as the number of vertices and
iterate a convolution kernel on it. Therefore, they obtain a Mackworth-
Mockhtarian scheme, but the evolution is highly dependent on the sampling
of the polygon.

A geometrical scheme In order to avoid the above discussed problems,
we shall define an easy to implement version of the alternate scheme 11.1.

Let C® be a Jordan curve, X°® the set enclosed by this Jordan curve,
and z a point of C% = 9X°. Let K; be an affine invariant and translation
invariant set of convex sets (e.g. all ellipses,...) with area equal to t3/2,
Then, we define the t-affine opening O;X° as the set of the barycentres of
the elements of K; contained in X°. In the same way, we define the affine
closing F; X0 as the complementary of the opening of X¢. And we consider
the alternate scheme

Xn+1/2 — OtXn,
xntl FtXn+1/2.

This is the set evolution scheme associated with the convergent image evo-
lution scheme 11.1. Indeed, it is easy to check that u™ obeys 11.1 if and only
if its level sets obey the preceding scheme.

We shall now define a practical scheme associated with this theoretical
scheme. We notice that, in order to define the opening, we can restrict
the sets in K; to be chord sets, that is, sets bounded on the one side by
the boundary of the set and on the other by a chord. This leads to a
computationally easier variant.

If X is a set enclosed by a Jordan curve C(s), let (C(sg),C(s1)) be a
‘chord’, that is, a segment joining two points of C with sy < s;. We define
the At-opening as follows. For every sg, we consider the chords (C(s¢), C(s))
and we call A(s) the area of X between the chord and the curve C(o)
for s9 < o0 < s. The function A(s) is nondecreasing and we take s; =
sup{s, A(s) < At32}. We call CH(so) the chord set associated with the
chord (C(sq),C(s1)). It has an area less than or equal to At3/2.
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Fig. 17. The iterated weighted median filter (with an 8% 8 stencil) is applied to both
a grey level image (left down) and a binary image (left up) which is one of its level
sets. The right-hand images display what happens when n — oo: the displayed
images remain steady under the median filter because the curvature of all level sets
is implicitly computed as equal to 0.

Then the At-opening of X is defined by
OatX = X\ (U;CH(s)).

In the same way, we can define the closing Fa;X, by FarX = (OarX€)°.
Of course, O X may be no Jordan set. Now, if we discretize X and C, we
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can ensure that Oa;X remains a finite union of Jordan sets on which the
algorithm can be iterated. We now define a practical algorithm based on

the same principle.

1 C(i), i=1---N,is a polygon curve enclosing X.

2 For every i, we find the last j such that the area of the chord set
CH(C(i),C(j)) is less than At%/2. Then, we define a new vertex C(3),
contained in the vertex (C(j), C(j + 1)). C() is chosen so that either
C(1) = C(j) or the area of the chord set associated with the chord
(C(:),C(5)) is At3/2. Denote this chord set by CH(C(s),C(:)).

The new polygon Oa;C is defined as
OacX = X \ (UiCH(C(i), C(1)).

It is a polygon or a union of polygons. The algorithm for computing Oat X
is complex if At is large, but very simple if At is of the same order as the
distance between two consecutive vertices.

We notice that such a method is ‘self-sampling’ since the number of ver-
tices cannot increase. The final algorithm consists in alternating Oa; and
Fa; as explained at the beginning of this section.

11.4. Comparison and cross-validation of the schemes

To summarize the above presentation, we have rejected several existing
schemes and essentially proposed two for the AMSS model: first a finite
difference scheme and second a curve evolution scheme (which can in theory
be used for handling images but, because of high computational cost, this
has not yet been done). In any case, we can compare both schemes on
images which are characteristic functions. The match, however, would not
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Fig. 19. Curve evolution. From left to right and from up to down: (a) t = 0; (b)
t=9,¢t=15t=21,1t=25

be fair, were the finite difference scheme to be applied to an image which
presents abrupt fronts. So, following Cohignac et al. (1993a) we used the
‘morphologization’ of the numerical scheme for comparison. We know that
the morphological invariance can be restored by using the ‘morphological
school’ idea of running the algorithm separately on each level set of the im-
age and then reconstructing it. Moreover, a very efficient numerical idea
of Osher and Sethian (1988) is to run the algorithm not on a set, but
on some Lipschitz function having this set as a level set (see Section 9),
therefore allowing good behaviour of numerical schemes by avoiding explicit
front tracking (Figure 1(c)). When done in this framework, Cohignac et al.
(1993a) proved a full cross-validation of the above selected finite difference
scheme and curve evolution scheme: complicated objects such as a spiral
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evolve in exactly the same way when handled with schemes with so different
an implementation (see Cohignac et al. (1993a) for more details).

12. Conclusions

In this review, we have described with the unified formalism of multiscale
analysis more than 20 acknowledged theories of image, shape and texture
analysis. Following recent mathematical work, we have shown how axiomatic
analysis reduced these theories to not more than one model for standard
multiscale analysis, the AMSS model, while a large number of segmentation
multiscale devices were reduced to a single variational algorithm. The same
analysis applied to movies also led to a single model, with applications to
motion analysis and movie denoising. As an application of the unified theory,
we have shown how it permitted a rigorous axiomatic and experimental
discussion of a psychophysical theory such as Julesz texture discrimination
theory.

The second part of our review deals with algorithms implementing a highly
geometrically invariant equation, the AMSS model, as well as its Euclidean
version, MCM. We have discussed several algorithms directly proposed for
these equations, as well as procedures which, although not directed towards
solving any PDE, happen to be discrete versions of the MCM.

Unless we have considered a wide range of theories and algorithms, the
conclusion of the study considerably narrows the idea of what has been aimed
and attained by the image analysis research. Indeed, under the variety of
methods lies essentially one aim for the multiscale analysis: the computation
of multiscale curvature, multiscale orientation, multiscale affine curvature,
and multiscale apparent velocity. And nothing else! This is due to the
obvious invariance requirements, which do not leave space for any other dif-
ferential operator. In the same way, the invariance requirements practically
specify the forms the algorithms must take. In any case, image processing
has contributed to mathematics by proposing new variational problems and
new methods for solving them (for the segmentation problem). In the case
of smoothing multiscale analyses, it has brought a new equation, the AMSS
model, as well as new variants of schemes for the MC equation.

Appendix A. The ‘fundamental theorem’ of image analysis

Fundamental Theorem 2 If an image multiscale analysis T; is causal
and regular then u(t,z) = (Tyu)(x) is a viscosity solution of (3.1), where the
function F, defined in the regularity axiom, is nondecreasing with respect to
its first argument D2?u. Conversely, if ug is a bounded uniformly continuous
image, then equation (3.1) has a unique viscosity solution.



FORMALIZATION AND COMPUTATIONAL ASPECTS OF IMAGE ANALYSIS 51

Proof. Assume for simplicity that u(t,z) is C? in the neighbourhood of
(t,z). Then, we have

u(t,y) = u(t,z) + (Du,y — z) + $D%u(y — 2,y — ) + o(ly — z[*).
Let € > 0 and Q. a quadratic form given by

Qe(y) = u(t,x) + (Du,y — ) + $D"uly —z,y — ) + ey — 2"
Then, in a neighbourhood of (t, z)

Qe(y) <u(t,y) < Qc(y) for y # z,
and by using the causality principle we obtain
(Tt41,tQ-)(x) < (Tign w(®))(@) < (Tegn,tQe) ().
On the other hand, we also have
Q-c(x) = Qe(z) = u(t, z) = (T1:Q-)(x) = (T1,:Q¢)(2).

Therefore we deduce from the above relations

3(Tt+h,tQ—e) Tt+h,tu(ax) - Tt,tU(CC)

(z) < liminf

oh h
< limsup Tt+h,tu(a$;l“ T qu(x) < a(Ttgi;L,th)(x)‘

By using the regularity principle and the continuity of the function F', and
taking e — 0 we obtain that u(t, ) satisfies equation (3.1). Finally, in order
to obtain that F'(A,p,c,xz,t) is nondecreasing with respect to A, we notice
that if A < B then the quadratic forms

Qaly) = Ay -2),(y—x)+(py—=z)+c,
Qely) = 3By -=),y—z)+{@y—1z)+c

satisfy Qa(y) < Qp(y) and by using an obvious adaptation of the above
proof, we obtain F(A4,p,c,z,t) < F(B,p,c, z,t) if A> B.

To simplify the exposition, we have showed that equation (3.1) is true in
the case where u is a C? function. By using the same ideas in the framework
of viscosity solutions (see Crandall et al. (1991)), it is possible to show
that equation (3.1) is true in the sense of viscosity solutions for any wu(t,z)
uniformly continuous satisfying the causality and regularity principles. The
fact that if ug(z) is a bounded uniformly continuous function, equation (3.1)
has a unique viscosity solution is proved in Chen et al. (1991), Crandall et
al. (1991) and Evans and Spruck (1991).

Appendix B. Proof of the scale normalization lemma

Normalization Lemma (Normalization of scale.) Assume that ¢t — T;
is a one-to-one family of operators satisfying [affine invariance]. Then the
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function #(t, B) only depends on t and |det B|: #(t, B) = t'(t,| det B|'/?)
and increases with respect to t. Moreover, there exists an increasing differ-
entiable rescaling function o: [0, 00] — [0, 0], such that

t'(t, B) = 0 (o(t)| det B|}/?)

and if we set S; = T,-1(;) we have t'(t,B) = t|det B|'/2 for the rescaled
analysis.

Proof. First we notice that for any linear transforms B and C and any t
one has the semigroup property

(i) t'(t,BC) =t'(¥'(t,B),C).

Indeed, we have BCTt’(t,BC) = TtBC = BTt’(t,B)C = BCTt’(t’(t,B),C)- The
map which associates T; with ¢t being one to one, this implies the stated
relation.

Next, we show that

i t'(t, A) increases with respect to ¢.
P

Let us prove that t'(¢, A) is one to one with respect to ¢ for any A. Indeed,

if not, there would be some 4 and some (s,t) such that #'(t, 4) = t/(s, A).

Thus Ty A = ATy (4 4) = ATy (s,4) = T5A and therefore ¢ = s because T; is one

to one. Notice that this implies, in particular, that ¢'(0, A) = 0. Therefore,

since t'(t, A) is nonnegative (by definition), one to one and continuous with

respect to t, we can deduce that it is increasing with respect to t.
Moreover t'(t, A) satisfies

(iii) t'(t,R) =t for any orthogonal transform R.

Indeed, let R be an orthogonal transform. Then iterating the formula of
(i) we have

(.. ¢ R)...,R),R),R) =t(t, R").

Remark that there is a subsequence of R™ tending to Id. (Indeed, there is a
subsequence R™ which converges to some H, orthogonal, because the ortho-
gonal group is compact. Therefore, the subsequence R™+17" converges
to Id.) Since there exists a subsequence of R™ tending to Id and since
t' is continuous we have for this subsequence lim¢'(¢, R*) = ¢/(¢,I1d) = t.
Assume by contradiction that ¢'(¢, R) = t” with ¢’ <t then t/(¢(¢,R),R) =
t'(t",R) < t/(t,R) = t" and by recursion,
@, R =t {'{#(..¢,R)...,R),R),R) <t' <t

This is a contradiction. Thus ¢/(t, R) > t. We prove the converse inequality
in the same way and we obtain t'(¢,R) = ¢.

We note that any linear transform B of IR? can be obtained as a product of
orthogonal transforms and of linear transforms of the kind A(}A): (z,y) —
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(Az,y) where X is nonnegative. We only need to make a singular value
decomposition of B: B = R; DR, where R; and Ry are both orthogonal
transforms and D is a transform of the kind (z,y) — (Aiz, A2y) where
A; are non negative. Now, it is clear that D can be decomposed as D =
A(M)RA(My)R™! where R is the orthogonal transform: (z,y) — (—y,x).
Using (i), ¢'(t, R;) = t, the singular value decomposition and A(A1)A(Ag) =
A(A1A2), we obtain

t'(t, B) = t'(t, A\{Ag) = t'(t, | det B|*/?).
Using (i) and (ii), we have
(v) (M) = ¢t m)N)
for any positive A and p. Differentiating this relation with respect to u at
p =1 yields
g—f\,(t,/\) = g—f\/(t, l)aa—tt,(t,/\). (B.1)
Choose o such that ¢’ = o and set

t'(t,A) = G(t,a(t))N),

A

where
o(t) = exp (/lt ds/¢(s)>.

Then the preceding relation (B.1) yields 0G/dz(z,y) = 0. Thus G(z,y) =
B(y) for some differentiable nondecreasing function 3. We obtain that
t'(t,\) = B(c(t))). Returning to the definition of ¢(t), we have

o(t) = 0t'JON(t, 1) = 9B(a(t)A)/dA(t,1)
and
¢(t) = a(t)B' (Aa(t)) = (t)a’ ()5 (a(t)A).

Thus the derivative of 8(o(t)) is 1 and integrating this last relation between
0 and t yields B(a(t)) = t + B(0(0)). Using the fact that ¢'(0,\) = 0
(which derives from the injectivity of the T;), we obtain 3(c(0)) = 0 and
therefore t'(t,\) = oc~}(Ao(t)). To finish the proof, we set S; = To-1(t)
and we prove that the affine invariance is true for S; with #/(¢t,A) = At
StB = To—l(t)B = BTt’(a—l(t),,\) = BTa‘l(Aa(a—l(t))) = BTo_l(At) = BS)\t.

Appendix C. Classification of shape multiscale analyses

Theorem
(i) Under the three principles (pyramidal, local shape inclusion, ‘basic’),
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the multiscale analysis of shapes is governed by the curvature motion equa-
tion
z = g(t, curv(z))7i(z), (C.1)

where g is defined by (4.1).
(ii) If the analysis is affine invariant, then the equation of the multiscale
analysis is, up to rescaling,

= (t - curv(x))i(z), (C.2)

where y(z) = a-z'/3 if 2 > 0 and y(z) = b- /3 if £ < 0 and a, b are two
nonnegative values.

(iii) If we add that T;(X°¢) = T;(X)° [Reverse contrast invariance] then
the function g in (i) is odd and we get

@ = (t - curv(z))37(z). (C.3)

Proof. (i) Let X be a silhouette and assume that T;(X) has a boundary
which is a C? manifold in a neighbourhood of a point z of 8X. Then it has a
curvature x at point x and we consider a subosculatory and a surosculatory
disk, that is, a disk D with curvature x — ¢ and a disk D’ with curvature
k+ €, both tangent to the silhouette at . Applying the same two principles
as in the lemma, we see that

TH—h,t(D) M B(.’E, ’l") C Tt+h,t(X) n B(.’L‘, 7") C Tt+h,t(D/) M B(.’L‘,T).

Thus, denoting by z(t + h) the point of 8T;,(X) such that z(t + h) — z(t)
is parallel to 7i(x), we obtain

p(t, h, k—e)=p(t,0, s—€) < (z(t+h)—2(t))-7i(x) < p(t, h, K+e)—p(t, 0, K+e).

Dividing by h and passing to the limit when h tends to 0 yields

Op z(t+ h) — z(t)

5};“’0’ k —€) < liminf h -fi(x),

z(t+ h) — z(t)
h
We obtain equation (C.2) by passing to the limit when € tends to 0 and

using the fact that xk — 9p/dh(t,0, k) is continuous.
(ii) After renormalization, we can use the identity

lim sup -fi(x) < gg(t, 0,x +¢).

Tirr,tDx = DaTigpmyatrs

(where Dy = A1Id) and so, we can deduce that the function p of the basic
principle must satisfy p(¢, k,\/T) = A71p(At, Ah,1/r) Therefore, we obtain
the relation (after differentiation with respect to h at 0)

g(t, As) = g(Xt, s),
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for any t > 0, A > 0 and s € IR Changing ¢ in t/)\ and taking A\ = 1/t we
get g(t,s) = g(1,ts) = B(ts) for the function G defined as B(z) = ¢(1, z).

On the other hand, we can use the identity T4 ¢A = ATy h ¢, where A is
the linear transform whose determinant is one,

(z,y) = (Az,(1/A)y), A>0.

Let us apply this identity to the unit disk A. Look at the point z¢ = (1,0)
on the boundary of A. Then the velocity of x¢ is 8(—t), and this velocity
is transformed into AB(—t). Now, look at AA. Since AA is an ellipse with
curvature —A3 at point Az, the velocity of Axp is B(~t-A%). Using the first
identity, we obtain 8(—t.A3) = A3(—t). Taking t = 1, we get B(x) = b- /3
for x < 0 (b = B(—1)). Now, apply the same technique to A° and we get
the result 3(z) = a - z'/3 for z > 0 (a = B(1)).

(iii) With the same technique as above we obtain that the function S is
odd. O
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